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Tandem Cope-Claisen Rearrangement: 
A Contrathermodynamic [3,3] Sigmatropic Sequence 

Sir: 

The Claisen rearrangement and to a lesser extent the Cope 
rearrangement have found substantial utility in the method­
ology of synthetic organic chemistry.' These rearrangements 
have been exploited in tandem (Claisen-Cope rearrangement2) 
in such a manner that the lower activation energy, irreversible 
Claisen rearrangement generates a 1,5-hexadiene which per­
mits a subsequent, higher activation energy, reversible Cope 
rearrangement to proceed. The aldehyde produced (in the case 
of vinyl ether rearrangements) depends upon the position of 
the Cope equilibrium and, in general, is the 1,5-hexadiene with 
the more highly substituted double bonds. 

To our knowledge this tandem sequence has not been 
practiced in the opposite sense, whereby the Cope triggers the 
Claisen rearrangement. We report here that this reaction se­
quence is viable and that it serves to shift unfavorable Cope 
equilibria by an irreversible Claisen rearrangement. 

Thermolysis3 of ester la4-5 at 275 0C provided an equilib­
rium mixture of esters la and 2a (Afeq(2a/la) = 0.25). Al­
though well suited for eventual Claisen rearrangement via the 
sequence la - • 2a —• 2b -» 2c -»• 3, ester 2a is the minor 

1 V ^ N n 

b , R = CH7OH 

c , R - CH2OCH-CH 

"a, CH3MgBr; b, H2C2O4 -2H2O, C6H5CH3, A; c, LiAlH4, Et2O; d, 
C2H5OCH=CH2, Hg(OAc)2; e, (C6H5)3P=CH2, Me2SO. 

component in the equilibrium. This difficulty was circum­
vented by transforming ester la into vinyl ether Ic by se­
quential LiAItU reduction and vinylation. Rearrangement of 
Ic in a flow system (hexane, N2, 525 0C, 10 s) gave rise to the 
aldehyde 3 in 57% yield. 

When the rearrangement was performed in a sealed tube 
(375 0C, 4 min) the aldehyde 3 was formed as the major 
product: IR (CCl4) 2710, 1726, 1638 cm"1; NMR (CDCl3, 
270 MHz) S 9.65 (t, 1 H, J = 2 Hz), 5.84-5.63 (2 H, m), 
5.04-4.88 (4 H, m), 2.79-2.68 (1 H, m), 2.44-2.36 (2 H, m), 
1.53-1.33 (2 H, m), 1.03 (3 H, s), 1.02 (3 H, s). The aldehyde 
4 (14%) was also formed in the reaction along with an un­
identified (6%) aldehyde. Aldehyde 4 was independently shown 
to arise from 3 (325 0C, 2 h) via Conia rearrangement.6 

The vinyl ether 8, prepared as outlined in Scheme I, was 
rearranged to a diastereomeric mixture (55:45) of aldehydes 
9: 87%; IR (CCl4) 2725, 1719, 1638 cm"1; NMR (CDCl3, 90 
MHz) 5 9.69 (« 0.5 H, t, / = 3.3 Hz, 270 MHz), 9.66 (« 0.5 
H, d,d, J = 2.4, 2.5 Hz, 270 MHz), 6.00-5.51 (1 H, m) 
5.16-4.74 (4 H, m), 1.22 and 0.98 (3 H, 2s). The vinyl ether 
10 containing 5% 8 was subjected to Claisen rearrangement 
at 185 0C to produce a nearly identical mixture of diastereo-
mers.7 A 50:50 ratio of isomers of the congeneric esters of 9 
was obtained8 when the precursory alcohol of 10 was subjected 
to the orthoacetate Claisen rearrangement conditions9 (140 
0C). These data reveal a AAF* which is temperature insen­
sitive over the temperature range studied.10 

Vinyl ether 11 (Scheme I) gave rise to a single aldehyde 12 
(91%; IR (CCl4) 2721, 1720, 1640 cm"1; NMR (CDCl3, 90 
Mz) 5 9.73(1 H,t, J= 3 Hz), 6.02-5.54(1 H, m), 5.15-4.73 
(4 H, m), 2.44 (2 H, d, J = 3 Hz)) when heated for a short 
period of time. Prolonged heating gave rise to secondary 
products. 

The equilibrium between 1,2-divinylcyclohexanes and 
1,5-cyclodecadienes is one which generally lies to the side of 
the former and manifests itself in natural products chemistry 
in the elemane-germacrane equilibrium.1' The Cope-Claisen 
rearrangement serves as a means of preparing functionalized 
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"a, (CH2=CH)2CuLi, Me2S, THF; b, C2H5OCH=CH2, Hg(OAc)2; 
c, (C6H5J3P=CH2, THF. 

cyclodecadienes. 
Hydroxyenone 1312 (Scheme II) provided 1413 (mp 70-71 

0 C; NMR (CDCl3, 270 MHz) 8 5.90-5.74 (1 H, m), 5.19-
5.07 (2 H, m), 4.10-4.00 (1 H, m, Ha), 3.01 (dt, J = 8, 4 Hz, 
He), 2.53 (dt, J = 9, 5 Hz, Hb), 2.11 (3 H, s)) upon stereose­
lective cuprate14 addition and kinetic protonation of the re­
sultant enolate. The derived triene 15 was converted to 
(2Z,7Z)-8-methylcyclodecadien-l-acetaldehyde (16) in 55% 
yield (Scheme II):15 IR (neat) 2707, 1721, 748, 725 cm"1;16 '17 

NMR (CDCl3, 270 MHz) 5 9.64 (1 H, t, J = 2 Hz), 5.33 (1 
H, dt, / = 4,11 Hz, Ha), 5.05 (2 H, m, Hb, Hc), 1.69 (3 H, s). 
Extensive decoupling of the NMR spectrum supported the 
armchair18 conformation of 16. 

Since the Z,Z isomer is the thermodynamically most stable 
of the 1,6-cyclodecadienes,'8 we are not able to rule out at this 
time the possibility that diradicals are involved in the formation 
of 16 as opposed to a concerted pathway. The stereochemical 
consequences of this and related Cope-Claisen rearrangements 
and their application to natural products synthesis are under 
investigation. 
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Analysis of Monolayer Films at the Air-Water 
Interface by Field Desorption Mass Spectrometry 

Sir: 

The direct sampling of surfactant molecules in monolayer 
films at the air-water interface using a conventional field 
emitter1 and subsequent recording of their field desorbed mass 
spectra are demonstrated for the first time. The technique has 
proven applicable to a variety of surface films whose compo­
nents differ in molecular weight and molecular charge. 

Renewed interest in studying chemical reactions occurring 
in surfactant monolayer arrays has been promoted by the de­
velopment of sensitive instrumental methods allowing the 
detection, separation, and characterization of the small 
amounts of materials, ~ 1 0 ~ 9 - 1 0 - 1 0 mol/cm2, contained in 
such films. Recently, applications of the following analysis 
methodologies have been reported: absorption and emission 
spectrometry,2'3 infrared spectrometry,4 '6 vapor phase chro­
matography,7 and high performance liquid chromatography.8'9 

An important piece of characterization information previously 
unavailable has been the molecular weight of the surfactant 
reaction products. 

Field desorption mass spectrometry (FD MS) has proven 
a relatively mild technique for obtaining molecular ions of 
nonvolatile substances, including salts of ionizable organic 
compounds as well as high molecular weight monomeric and 
oligomeric compounds, with little or no fragmentation.10 

Normally, a field ion emitter, prepared according to the pro­
cedure of Schulten and Beckey,1 is immersed in a solution 
containing the compound to be analyzed and introduced into 
the FD ion source, a high field is applied, and the desorbed, 
positively charged ions are mass analyzed and detected. In the 
present work, the hydrophobic emitter is simply dipped once 
in and out of a monolayer covered air-water interface and 
analyzed using a Varian-Mat 731 mass spectrometer equipped 
with an electron impact/field ionization/field desorption 
(EI/FI/FD) source operated in the FD mode. Potentials of +8 
and —4 kV were applied to the field emitter and extraction 
element, respectively. A summary of the results for the sur­
factant compounds which have been examined in this manner 
is given in Table I and a typical spectrum is shown in Figure 
1. 

An upper limit to the amount of surfactant film transferred 
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